1932

Abstract

The majority of diseases are associated with alterations in multiple molecular pathways and complex interactions at the cellular and organ levels. Single-target monotherapies therefore have intrinsic limitations with respect to their maximum therapeutic benefits. The potential of combination drug therapies has received interest for the treatment of many diseases and is well established in some areas, such as oncology. Combination drug treatments may allow us to identify synergistic drug effects, reduce adverse drug reactions, and address variability in disease characteristics between patients. Identification of combination therapies remains challenging. We discuss current state-of-the-art systems pharmacology approaches to enable rational identification of combination therapies. These approaches, which include characterization of mechanisms of disease and drug action at a systems level, can enable understanding of drug interactions at the molecular, cellular, physiological, and organismal levels. Such multiscale understanding can enable precision medicine by promoting the rational development of combination therapy at the level of individual patients for many diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021511
2019-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021511.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021511&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Loscalzo J, Kohane I, Barabasi A-L 2007. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol 3:124
    [Google Scholar]
  2. 2.  McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ et al. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:72161061–68
    [Google Scholar]
  3. 3.  Bell D, Berchuck A, Birrer M, Chien J, Cramer DW et al. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:7353609–15
    [Google Scholar]
  4. 4.  Radovich M, Pickering CR, Felau I, Ha G, Zhang H et al. 2018. The integrated genomic landscape of thymic epithelial tumors. Cancer Cell 33:2244–58.e10
    [Google Scholar]
  5. 5.  Burk RD, Chen Z, Saller C, Tarvin K, Carvalho AL et al. 2017. Integrated genomic and molecular characterization of cervical cancer. Nature 543:7645378–84
    [Google Scholar]
  6. 6.  Patel VN, Gokulrangan G, Chowdhury SA, Chen Y, Sloan AE et al. 2013. Network signatures of survival in glioblastoma multiforme. PLOS Comput. Biol. 9:9e1003237
    [Google Scholar]
  7. 7.  Wu G, Feng X, Stein L 2010. A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11:5R53
    [Google Scholar]
  8. 8.  Meyer JM, Ginsburg GS 2002. The path to personalized medicine. Curr. Opin. Chem. Biol. 6:434–38
    [Google Scholar]
  9. 9.  Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K et al. 2012. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92:414–17
    [Google Scholar]
  10. 10.  Iyengar R 2013. Complex diseases require complex therapies. EMBO Rep 14:121039–42
    [Google Scholar]
  11. 11.  Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK 2006. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2:458–66
    [Google Scholar]
  12. 12.  Keith CT, Borisy AA, Stockwell BR 2005. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4:171–78
    [Google Scholar]
  13. 13.  Al-Lazikani B, Banerji U, Workman P 2012. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30:7679–92
    [Google Scholar]
  14. 14.  DeVita VT, Young RC, Canellos GP 1975. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 35:98–110
    [Google Scholar]
  15. 15.  Pourkavoos N 2012. Unique risks, benefits, and challenges of developing drug-drug combination products in a pharmaceutical industrial setting. Comb. Prod. Ther. 2:2
    [Google Scholar]
  16. 16.  Lopez JS, Banerji U 2017. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat. Rev. Clin. Oncol. 14:157–66
    [Google Scholar]
  17. 17.  Severyn B, Liehr RA, Wolicki A, Nguyen KH, Hudak EM et al. 2011. Parsimonious discovery of synergistic drug combinations. ACS Chem. Biol. 6:121391–98
    [Google Scholar]
  18. 18.  Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J et al. 2003. Systematic discovery of multicomponent therapeutics. PNAS 100:137977–82
    [Google Scholar]
  19. 19.  Danhof M 2016. Systems pharmacology: towards the modeling of network interactions. Eur. J. Pharm. Sci. 94:4–14
    [Google Scholar]
  20. 20.  Gadkar K, Kirouac D, Parrott N, Ramanujan S 2016. Quantitative systems pharmacology: a promising approach for translational pharmacology. Drug Discov. Today Technol. 21–22:57–65
    [Google Scholar]
  21. 21.  van Hasselt JGC, van der Graaf PH 2015. Towards integrative systems pharmacology models in oncology drug development. Drug Discov. Today Technol. 15:1–8
    [Google Scholar]
  22. 22.  van der Graaf PH, Benson N 2011. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm. Res. 28:1460–64
    [Google Scholar]
  23. 23.  Islam S, Zeisel A, Joost S, La Manno G, Zajac P et al. 2014. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11:2163–66
    [Google Scholar]
  24. 24.  Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR et al. 2017. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7:42296
    [Google Scholar]
  25. 25.  Fatehullah A, Tan SH, Barker N 2016. Organoids as an in vitro model of human development and disease. 18246–54
  26. 26.  Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V et al. 2013. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127:161677–91
    [Google Scholar]
  27. 27.  Tsigelny IF 2018. Artificial intelligence in drug combination therapy. Brief. Bioinform. In press
  28. 28.  Sun W, Sanderson PE, Zheng W 2016. Drug combination therapy increases successful drug repositioning. Drug Discov. Today 21:71189–95
    [Google Scholar]
  29. 29.  Yin N, Ma W, Pei J, Ouyang Q, Tang C, Lai L 2014. Synergistic and antagonistic drug combinations depend on network topology. PLOS ONE 9:4e93960
    [Google Scholar]
  30. 30.  Zhao B, Hemann MT, Lauffenburger DA 2014. Intratumor heterogeneity alters most effective drugs in designed combinations. PNAS 111:10773–78
    [Google Scholar]
  31. 31.  Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR et al. 2016. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165:1234–46
    [Google Scholar]
  32. 32.  Palmer AC, Sorger PK 2017. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171:71678–82.e13
    [Google Scholar]
  33. 33.  Micek ST, Welch EC, Khan J, Pervez M, Doherty JA et al. 2010. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to gram-negative bacteria: a retrospective analysis. Antimicrob. Agents Chemother. 54:51742–48
    [Google Scholar]
  34. 34.  Jeon M, Kim S, Park S, Lee H, Kang J 2018. In silico drug combination discovery for personalized cancer therapy. BMC Syst. Biol. 12:Suppl. 216
    [Google Scholar]
  35. 35.  van Hasselt JGC, van Eijkelenburg NKA, Beijnen JH, Schellens JHM, Huitema ADR 2014. Design of a drug-drug interaction study of vincristine with azole antifungals in pediatric cancer patients using clinical trial simulation. Pediatr. Blood Cancer 61:122223–29
    [Google Scholar]
  36. 36.  Oostendorp RL, Huitema A, Rosing H, Jansen RS, Ter Heine R et al. 2009. Coadministration of ritonavir strongly enhances the apparent oral bioavailability of docetaxel in patients with solid tumors. Clin. Cancer Res. 15:124228–33
    [Google Scholar]
  37. 37.  Swart M, Verbrugge I, Beltman JB 2016. Combination approaches with immune-checkpoint blockade in cancer therapy. Front. Oncol. 6:233
    [Google Scholar]
  38. 38.  Imamovic L, Ellabaan MMH, Dantas Machado AM, Citterio L, Wulff T et al. 2018. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172:1–2121–34.e14
    [Google Scholar]
  39. 39.  Munck C, Gumpert HK, Wallin AIN, Wang HH, Sommer MOA 2014. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 6:262262ra156
    [Google Scholar]
  40. 40.  Baym M, Stone LK, Kishony R 2015. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351:6268aad3292
    [Google Scholar]
  41. 41.  Kim S, Lieberman TD, Kishony R 2014. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. PNAS 111:4014494–99
    [Google Scholar]
  42. 42.  Danhof M, de Jongh J, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA 2007. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu. Rev. Pharmacol. Toxicol. 47:357–400
    [Google Scholar]
  43. 43.  Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK et al. 2012. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:4780–94
    [Google Scholar]
  44. 44.  Greco WR, Bravo G, Parsons JC 1995. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47:2331–85
    [Google Scholar]
  45. 45.  Foucquier J, Guedj M 2015. Analysis of drug combinations: current methodological landscape. Pharmacol. Res. Perspect. 3:e00149
    [Google Scholar]
  46. 46.  Loewe S 1928. Die quantitativen Probleme der Pharmakologie. Ergeb. Physiol. 27:147–187
    [Google Scholar]
  47. 47.  Bliss CI 1939. The toxicity of poisons supplied jointly. Ann. Appl. Biol. 26:3585–615
    [Google Scholar]
  48. 48.  Tan X, Hu L, Luquette LJ, Gao G, Liu Y et al. 2012. Systematic identification of synergistic drug pairs targeting HIV. Nat. Biotechnol. 30:111125–30
    [Google Scholar]
  49. 49.  O'Neil J, Benita Y, Feldman I, Chenard M, Roberts B et al. 2016. An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther. 15:61155–62
    [Google Scholar]
  50. 50.  Zhang J, Li H, Trounson A, Wu JC, Nioi P 2017. Combining hiPSCs and human genetics: major applications in drug development. Cell Stem Cell 21:P161–65
    [Google Scholar]
  51. 51.  Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V et al. 2013. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127:161677–91
    [Google Scholar]
  52. 52.  Engle SJ, Puppala D 2013. Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12:6699–712
    [Google Scholar]
  53. 53.  Inoue H, Nagata N, Kurokawa H, Yamanaka S, Auffray C et al. 2014. iPS cells: a game changer for future medicine. EMBO J 33:5409–17
    [Google Scholar]
  54. 54.  van Hassselt JGC, Iyengar R 2017. Systems pharmacology-based identification of pharmacogenomic determinants of adverse drug reactions using human iPSC-derived cell lines. Curr. Opin. Syst. Biol. 4:9–15
    [Google Scholar]
  55. 55.  Wang Y, Liang P, Lan F, Wu H, Lisowski L et al. 2014. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J. Am. Coll. Cardiol. 64:5451–59
    [Google Scholar]
  56. 56.  Wong ASL, Choi GCG, Cui CH, Pregernig G, Milani P et al. 2016. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. PNAS 113:92544–49
    [Google Scholar]
  57. 57.  Mebarki M, Bennaceur A, Bonhomme-Faivre L 2018. Human-cell-derived organoids as a new ex vivo model for drug assays in oncology. Drug Discov. Today 23:857–63
    [Google Scholar]
  58. 58.  Van De Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:4933–45
    [Google Scholar]
  59. 59.  Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ et al. 2015. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:7574564–68
    [Google Scholar]
  60. 60.  Dye BR, Hill DR, Ferguson MAH, Tsai Y-H, Nagy MS et al. 2015. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4:e05098
    [Google Scholar]
  61. 61.  Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L et al. 2018. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep 10:31088–101
    [Google Scholar]
  62. 62.  Wikswo JP 2014. The relevance and potential roles of microphysiological systems in biology and medicine. Exp. Biol. Med. 239:91061–72
    [Google Scholar]
  63. 63.  Mathur A, Loskill P, Shao K, Huebsch N, Hong SG et al. 2015. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5:8883
    [Google Scholar]
  64. 64.  Yu J, Cilfone N, Large E, Sarkar U, Wishnok J et al. 2015. Quantitative systems pharmacology approaches applied to microphysiological systems (MPS): data interpretation and multi-MPS integration. CPT Pharmacomet. Syst. Pharmacol. 4:10585–94
    [Google Scholar]
  65. 65.  Abaci HE, Shuler ML 2015. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7:4383–91
    [Google Scholar]
  66. 66.  Eduati F, Utharala R, Madhavan D, Neumann UP, Cramer T et al. 2016. Rapid identification of optimal drug combinations for personalized cancer therapy using microfluidics. bioRxiv 093906. https://doi.org/10.1101/093906
    [Crossref]
  67. 67.  Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y et al. 2015. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21:111318–25
    [Google Scholar]
  68. 68.  Bruna A, Rueda OM, Greenwood W, Batra AS, Callari M et al. 2016. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167:1260–74.e22
    [Google Scholar]
  69. 69.  Krepler C, Xiao M, Sproesser K, Brafford PA, Shannan B et al. 2016. Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies. Clin. Cancer Res. 22:71592–602
    [Google Scholar]
  70. 70.  Townsend EC, Murakami MA, Christodoulou A, Christie AL, Köster J et al. 2016. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell 29:4574–86
    [Google Scholar]
  71. 71.  Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C et al. 2017. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49:111567–75
    [Google Scholar]
  72. 72.  Wang Z, Gerstein M, Snyder M 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63
    [Google Scholar]
  73. 73.  Tedford NC, Hall AB, Graham JR, Murphy CE, Gordon NF, Radding JA 2009. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. Proteomics 9:1469–87
    [Google Scholar]
  74. 74.  Wang X, Zhang A, Wang P, Sun H, Wu G et al. 2013. Metabolomics coupled with proteomics advancing drug discovery toward more agile development of targeted combination therapies. Mol. Cell Proteom. 12:51226–38
    [Google Scholar]
  75. 75.  Kohler I, Hankemeier T, van der Graaf P, Knibbe C, van Hasselt J 2017. Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine. Eur. J. Pharm. Sci. 109S:S15–21
    [Google Scholar]
  76. 76.  Kell DB, Goodacre R 2014. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov. Today 19:171–82
    [Google Scholar]
  77. 77.  Winter GE, Rix U, Carlson SM, Gleixner KV, Grebien F et al. 2012. Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML. Nat. Chem. Biol. 8:11905–12
    [Google Scholar]
  78. 78.  Gulbahce N, Magbanua MJM, Chin R, Agarwal MR, Luo X et al. 2017. Quantitative whole genome sequencing of circulating tumor cells enables personalized combination therapy of metastatic cancer. Cancer Res 77:164530–41
    [Google Scholar]
  79. 79.  Liu Y, Fei T, Zheng X, Brown M, Zhang P et al. 2016. An integrative pharmacogenomic approach identifies two-drug combination therapies for personalized cancer medicine. Sci. Rep. 6:22120
    [Google Scholar]
  80. 80.  Jones LH, Bunnage ME 2017. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov. 16:4285–96
    [Google Scholar]
  81. 81.  Chandrasekaran S, Cokol-Cakmak M, Sahin N, Yilancioglu K, Kazan H et al. 2016. Chemogenomics and orthology-based design of antibiotic combination therapies. Mol. Syst. Biol. 12:5872
    [Google Scholar]
  82. 82.  Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC 2017. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35:5463–74
    [Google Scholar]
  83. 83.  Reinartz R, Wang S, Kebir S, Silver DJ, Wieland A et al. 2017. Functional subclone profiling for prediction of treatment-induced intratumor population shifts and discovery of rational drug combinations in human glioblastoma. Clin. Cancer Res. 23:2562–74
    [Google Scholar]
  84. 84.  Heath JR, Ribas A, Mischel PS 2015. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15:3204–16
    [Google Scholar]
  85. 85.  Xiong Y, Soumillon M, Wu J, Hansen J, Hu B et al. 2017. A comparison of mRNA sequencing with random primed and 3′-directed libraries. Sci. Rep. 7:14626
    [Google Scholar]
  86. 86.  Wei W, Shin YS, Xue M, Matsutani T, Masui K et al. 2016. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell 29:4563–73
    [Google Scholar]
  87. 87.  Lamb J, Crawford ED, Peck D, Modell JW, Blat IC et al. 2006. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:57951929–35
    [Google Scholar]
  88. 88.  Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E et al. 2018. The Library of Integrated Network-Based Cellular Signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst 6:13–24
    [Google Scholar]
  89. 89.  Wang Z, Lachmann A, Keenan AB, Ma'ayan A, Stegle O 2018. L1000FWD: fireworks visualization of drug-induced transcriptomic signatures. Bioinformatics 34:2150–52
    [Google Scholar]
  90. 90.  Kamburov A, Stelzl U, Lehrach H, Herwig R 2013. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41:D793–800
    [Google Scholar]
  91. 91.  Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J et al. 2014. The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–90
    [Google Scholar]
  92. 92.  Liu Y, Wei Q, Yu G, Gai W, Li Y, Chen X 2014. DCDB 2.0: a major update of the drug combination database. Database 2014:bau124
    [Google Scholar]
  93. 93.  Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ 2009. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8:2111–28
    [Google Scholar]
  94. 94.  Chen D, Liu X, Yang Y, Yang H, Lu P 2015. Systematic synergy modeling: understanding drug synergy from a systems biology perspective. BMC Syst. Biol. 9:56
    [Google Scholar]
  95. 95.  Hopkins AL 2008. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4:11682–90
    [Google Scholar]
  96. 96.  Zhao S, Iyengar R 2012. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 52:505–21
    [Google Scholar]
  97. 97.  Berger SI, Iyengar R 2009. Network analyses in systems pharmacology. Bioinformatics 25:192466–72
    [Google Scholar]
  98. 98.  Boran ADW, Iyengar R 2010. Systems approaches to polypharmacology and drug discovery. Curr. Opin. Drug Discov. Dev. 13:3297–309
    [Google Scholar]
  99. 99.  Schadt EE, Friend SH, Shaywitz DA 2009. A network view of disease and compound screening. Nat. Rev. Drug Discov. 8:4286–95
    [Google Scholar]
  100. 100.  Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L et al. 2013. Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol. Syst. Biol. 9:673
    [Google Scholar]
  101. 101.  Iyengar R, Zhao S, Chung S-W, Mager DE, Gallo JM 2012. Merging systems biology with pharmacodynamics. Sci. Transl. Med. 4:126126ps7
    [Google Scholar]
  102. 102.  Huang L, Li F, Sheng J, Xia X, Ma J et al. 2014. DrugComboRanker: drug combination discovery based on target network analysis. Bioinformatics 30:12i228–36
    [Google Scholar]
  103. 103.  So J, Pasculescu A, Dai AY, Williton K, James A et al. 2015. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy. Sci. Signal. 8:371rs3
    [Google Scholar]
  104. 104.  Zhao S, Nishimura T, Chen Y, Azeloglu EU, Gottesman O et al. 2013. Systems pharmacology of adverse event mitigation by drug combinations. Sci. Transl. Med. 5:206ra140
    [Google Scholar]
  105. 105.  Bloomingdale P, Nguyen VA, Niu J, Mager DE 2018. Boolean network modeling in systems pharmacology. J. Pharmacokinet. Pharmacodyn. 45:1159–80
    [Google Scholar]
  106. 106.  Traynard P, Tobalina L, Eduati F, Calzone L, Saez-Rodriguez J 2017. Logic modeling in quantitative systems pharmacology. CPT Pharmacomet. Syst. Pharmacol. 6:8499–511
    [Google Scholar]
  107. 107.  Irurzun-Arana I, Pastor JM, Trocóniz IF, Gómez-Mantilla JD 2017. Advanced Boolean modeling of biological networks applied to systems pharmacology. Bioinformatics 33:71040–48
    [Google Scholar]
  108. 108.  Shim JV, Chun B, van Hasselt JGC, Birtwistle MR, Saucerman JJ, Sobie EA 2017. Mechanistic systems modeling to improve understanding and prediction of cardiotoxicity caused by targeted cancer therapeutics. Front. Physiol. 8:651
    [Google Scholar]
  109. 109.  Morris MK, Clarke DC, Osimiri LC, Lauffenburger DA 2016. Systematic analysis of quantitative logic model ensembles predicts drug combination effects on cell signaling networks. CPT Pharmacomet. Syst. Pharmacol. 5:10544–53
    [Google Scholar]
  110. 110.  Sahin Ö, Fröhlich H, Löbke C, Korf U, Burmester S et al. 2009. Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Biol. 3:1
    [Google Scholar]
  111. 111.  Barrette AM, Bouhaddou M, Birtwistle MR 2018. Integrating transcriptomic data with mechanistic systems pharmacology models for virtual drug combination trials. ACS Chem. Neurosci. 9:1118–29
    [Google Scholar]
  112. 112.  Du W, Goldstein R, Jiang Y, Aly O, Cerchietti L et al. 2017. Effective combination therapies for B-cell lymphoma predicted by a virtual disease model. Cancer Res 77:81818–30
    [Google Scholar]
  113. 113.  van Hasselt JGC, Gupta A, Hussein Z, Beijnen JH, Schellens JHM, Huitema ADR 2013. Population pharmacokinetic-pharmacodynamic analysis for eribulin mesilate associated neutropenia. Br. J. Clin. Pharmacol. 76:62878–81
    [Google Scholar]
  114. 114.  van Hasselt J, Gupta A, Hussein Z, Beijnen J, Schellens J, Huitema A 2015. Integrated simulation framework for toxicity, dose intensity, disease progression, and cost effectiveness for castration-resistant prostate cancer treatment with eribulin. CPT Pharmacomet. Syst. Pharmacol. 4:7374–85
    [Google Scholar]
  115. 115.  Yamamoto Y, Välitalo PA, Huntjens DR, Proost JH, Vermeulen A et al. 2017. Predicting drug concentration-time profiles in multiple CNS compartments using a comprehensive physiologically-based pharmacokinetic model. CPT Pharmacomet. Syst. Pharmacol. 6:11765–77
    [Google Scholar]
  116. 116.  Min JS, Bae SK 2017. Prediction of drug-drug interaction potential using physiologically based pharmacokinetic modeling. Arch. Pharm. Res. 40:1356–79
    [Google Scholar]
  117. 117.  van Hasselt JGC, van Eijkelenburg NKA, Beijnen JH, Schellens JHM, Huitema ADR 2013. Optimizing drug development of anti-cancer drugs in children using modelling and simulation. Br. J. Clin. Pharmacol. 76:130–47
    [Google Scholar]
  118. 118.  Miao X, Koch G, Straubinger RM, Jusko WJ 2016. Pharmacodynamic modeling of combined chemotherapeutic effects predicts synergistic activity of gemcitabine and trabectedin in pancreatic cancer cells. Cancer Chemother. Pharmacol. 77:1181–93
    [Google Scholar]
  119. 119.  Koch G, Walz A, Lahu G, Schropp J 2009. Modeling of tumor growth and anticancer effects of combination therapy. J. Pharmacokinet. Pharmacodyn. 36:2179–97
    [Google Scholar]
  120. 120.  Yin A, Yamada A, Stam WB, van Hasselt JGC, van der Graaf PH 2018. Quantitative systems pharmacology analysis of drug combination and scaling to humans: the interaction between noradrenaline and vasopressin in vasoconstriction. Br. J. Pharmacol. 175:163394–406
    [Google Scholar]
  121. 121.  Zhang X-Y, Birtwistle MR, Gallo JM 2014. A general network pharmacodynamic model-based design pipeline for customized cancer therapy applied to the VEGFR pathway. CPT Pharmacomet. Syst. Pharmacol. 3:e92
    [Google Scholar]
  122. 122.  Kirouac DC, Onsum MD 2013. Using network biology to bridge pharmacokinetics and pharmacodynamics in oncology. CPT Pharmacomet. Syst. Pharmacol. 2:9e71
    [Google Scholar]
  123. 123.  Wang Z, Butner JD, Cristini V, Deisboeck TS 2015. Integrated PK-PD and agent-based modeling in oncology. J. Pharmacokinet. Pharmacodyn. 42:179–89
    [Google Scholar]
  124. 124.  Harris SJ, Brown J, Lopez J, Yap TA 2016. Immuno-oncology combinations: raising the tail of the survival curve. Cancer Biol. Med. 13:2171–93
    [Google Scholar]
  125. 125.  Iafolla MAJ, Selby H, Warner K, Ohashi PS, Haibe-Kains B, Siu LL 2018. Rational design and identification of immuno-oncology drug combinations. Eur. J. Cancer 95:38–51
    [Google Scholar]
  126. 126.  Silver D, Huang A, Maddison CJ, Guez A, Sifre L et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529:7587484–89
    [Google Scholar]
  127. 127.  Xie L, Draizen EJ, Bourne PE 2017. Harnessing big data for systems pharmacology. Annu. Rev. Pharmacol. Toxicol. 57:245–62
    [Google Scholar]
  128. 128.  Bansal M, Yang J, Karan C, Menden MP, Costello JC et al. 2014. A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol. 32:121213–22
    [Google Scholar]
  129. 129.  Cheng F, Zhao Z 2014. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. Med. Inform. Assoc. 21:e2e278–86
    [Google Scholar]
  130. 130.  Chua HE, Bhowmick SS, Tucker-Kellogg L 2017. Synergistic target combination prediction from curated signaling networks: machine learning meets systems biology and pharmacology. Methods 129:60–80
    [Google Scholar]
  131. 131.  Benson HE, Watterson S, Sharman JL, Mpamhanga CP, Parton A et al. 2017. Is systems pharmacology ready to impact upon therapy development? A study on the cholesterol biosynthesis pathway. Br. J. Pharmacol. 174:234362–82
    [Google Scholar]
  132. 132.  Tavassoloy I, Hu Y, Zhao S, Mariottini C, Boran A et al. 2018. Systems therapeutics analyses identify genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer. bioRxiv 396697. https://doi.org/10.1101/396697
    [Crossref]
  133. 133. Cancer Genome Atlas Res. Netw. 2014. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:7511543–50
    [Google Scholar]
  134. 134.  Siddiq MM, Zorina Y, Hansen J, Yadaw A, Rabinovich V et al. 2018. Systems therapeutics for axonal regeneration in the central nervous system. bioRxiv 157099. https://doi.org/10.1101/157099
    [Crossref]
  135. 135.  Koleti A, Terryn R, Stathias V, Chung C, Cooper DJ et al. 2018. Data portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids Res 46:D1D558–66
    [Google Scholar]
  136. 136.  Kuhn M, Szklarczyk D, Franceschini A, Von Mering C, Jensen LJ, Bork P 2012. STITCH 3: zooming in on protein–chemical interactions. Nucleic Acids Res 40:D876–80
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021511
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error